Énergie mécanique

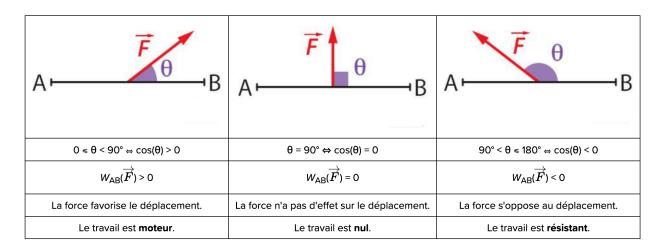
Énergie cinétique et travail d'une force

1.1. Énergie cinétique

Un objet en mouvement possède une énergie qui dépend de sa masse et de sa vitesse. Cette énergie est appelée énergie cinétique. Elle s'exprime en joule (J).

$$E_C = \frac{1}{2}m \times v^2$$

La masse m est exprimée en kg et la vitesse v en m.s⁻¹.


1.2. Travail d'une force constante

Activité page 287

On note $W_{AB}(\overrightarrow{F})$, le travail d'une force constante \overrightarrow{F} , appliquée à un système se déplaçant d'un point A vers

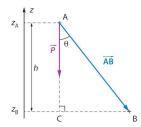
$$W_{AB}(\overrightarrow{F}) = \overrightarrow{F} \cdot \overrightarrow{AB} = F \times AB \times cos(\alpha)$$

 $W_{AB}(\overrightarrow{F}) = \overrightarrow{F} \cdot \overrightarrow{AB} = F \times AB \times cos(\alpha)$ Ce travail s'exprime en joule (J), l'intensité de la force est en newton (N), la distance AB en mètre (m), α est l'angle formé par \overrightarrow{F} et \overrightarrow{AB} .

1.2.1. Théorème de l'énergie cinétique

Par son travail une force peut modifier le mouvement d'un système. L'énergie cinétique du système évolue, elle est liée à l'ensemble des travaux des forces qui s'exercent sur le système. Le théorème de l'énergie cinétique peut s'écrire :

$$\Delta E_C = E_C(B) - E_C(A) = \Sigma W_{AB}(\overrightarrow{F})$$


 $\Delta E_C = E_C(B) - E_C(A) = \Sigma W_{AB}(\overrightarrow{F})$ La variation de l'énergie cinétique (finale moins initiale) correspond à la somme des travaux des forces qui s'exercent sur le sytème.

Forces conservatives et non-conservatives

2.1. Forces conservatives

Une force est conservative lorsque la valeur de son travail est indépendante du chemin suivi par le système.

Les forces constantes sont conservatives. Le poids \overrightarrow{P} est une force conservative.

Le poids \overrightarrow{P} est indépendant du trajet entre A et B.

On peut trouver facilement le travail du poids

Exercices 29 et 30 page 297; 35 page 319

2.2. Forces non-conservatives

Lorsque le travail d'une force dépend du chemin suivi par le système, la force est dite non-conservative. Les forces de frottement, la force de tension d'un fil, les forces pressantes sont des forces non-conservatives. Exemple des forces de frottement

Les forces de frottement sont opposées au mouvement du système.

Ainsi $W_{AB}(\vec{f}) = \vec{f} \cdot \overrightarrow{AB} < 0$, ce travail est résistant

Dans le cas où le déplacement est rectiligne on a : $W_{AB}(\vec{f}) = \vec{f} \cdot \overrightarrow{AB} = f \times AB \times cos(180^o) = -f \times AB$

2.3. Énergie potentielle de pesanteur

À chaque force conservative on peut associer une énergie potentielle. C'est-à-dire une énergie potentielle d'un système liée à sa position.

On peut citer l'énergie potentielle élastique pour un ressort. Cette année, nous ne verrons que l'énergie potentielle de pesanteur.

Ce panneau indique un danger: Un risque d'éboulement. Des roches sont susceptibles de se

Le potentiel est une capacité « en devenir ». Une énergie potentielle est donc stockée en attendant d'être libérée. Elle est donc « potentiellement » apte à produire quelque chose!

La variation de l'énergie potentielle de pesanteur d'un système qui se déplace d'un point A à un point B est égale à l'opposé du travail du poids sur ce trajet.

$$\Delta E_{pp} = -W_{AB}(\overrightarrow{P})$$

$$E_{pp}(B) - E_{pp}(A) = mg \times (z_A - z_B) = mgz_B - mgz_A$$

Par identification des termes de cette expression, on peut exprimer l'énergie potentielle de pesanteur au voisinage de la Terre d'un système dont l'altitude est z :

$$E_{pp} = mgz + C$$

 $E_{pp}=mgz+C$ Remarque : L'énergie potentielle de pesanteur est définie à une constante près. Seule sa variation est utile. Par convention, il est simple de considérer qu'elle est nulle pour l'altitude z=0.

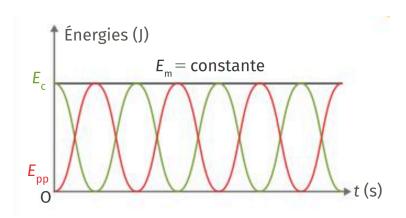
$$E_{pp} = mgz$$

Exercices 30 page 319; 56 page 299; 56 et 58 page 301

3. Conservation et non conservation de l'énergie mécanique

3.1. Énergie mécanique

L'énergie mécanique d'un système est la somme de son énergie cinétique et de son énergie potentielle.

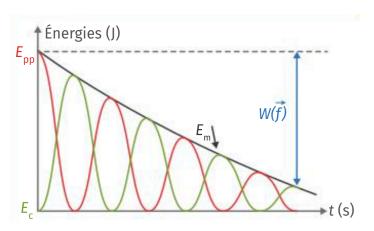

$$E_m = E_C + E_{pp}$$

Hauteur Énergie potentielle de pesanteur maximale de la masse Énergie cinétique maximale

3.2. Conservation de l'énergie mécanique

Lorsqu'un solide n'est soumis qu'à des forces conservatives, il y a conservation de l'énergie mécanique.

$$\begin{split} \Delta E_m &= 0 \\ E_m(B) &= E_m(A) \\ E_C(B) + E_{pp}(B) &= E_C(A) + E_{pp}(A) \end{split}$$


3.3. Non-conservation de l'énergie mécanique

Lors qu'un solide est soumis à des forces non-conservatives, il y a variation de l'énergie mécanique :

$$\Delta E_m \neq 0$$

Cette variation est due aux travaux des forces non-conservatives

$$\Delta E_m = \Sigma W_{AB}(\vec{f}_{non-conservative})$$

