Activité: découverte de l'oxydo-réduction

Modéliser l'évolution d'un système par une réaction

Par quelle réaction peut-on modéliser l'évolution du système : ($Cu^{2+}(aq) + SO_4^{2-}(aq)$) et Zn(s)

A - Le système chimique à étudier

Un système chimique est constitué d'une solution de sulfate de cuivre, notée $(Cu^{2+}(aq) + SO_4^{2-}(aq))$, et de poudre de zinc, Zn (s).

- 1. A quelle entité chimique est due sa couleur ?
- 2. Quelles sont les entités chimiques qui constituent le système chimique?

B - Etude de l'état final du système

Le mélange est agité quelques minutes à l'aide d'un agitateur magnétique.

Pour l'élément cuivre :

- 1. Qu'observe-t-on quand on examine le mélange?
- 2. Peut-on observer une décoloration de la solution ? Un dépôt sur la poudre de zinc ?
- 3. Comment expliquer la décoloration de la solution ?
- 4. En tenant compte de la conservation de l'élément cuivre au cours de la transformation chimique, émettre une hypothèse sur la nature d'une espèce chimique qui s'est déposée sur le zinc.

Pour l'élément zinc :

- 1. Après filtration, réaliser des tests de reconnaissance des ions présents dans la solution
- 2. Peut-on mettre en évidence l'ion zinc (II) : Zn²⁺ (aq) ?

C - Modélisation par une réaction

La transformation du système chimique peut être modélisée par une réaction

- 1. Rechercher les réactifs et les produits.
- 2. Ecrire une équation de réaction en respectant les lois de conservation des éléments et des charges électriques.

<u>D - Interprétation microscopique</u>

Au cours de la transformation chimique (choisir les bonnes réponses) :

L'ion cuivre (II), Cu ²⁺			L'atome de zinc, Zn		
☐ a gagné	□ 1	☐ neutron	☐ a gagné	□ 1	☐ neutron
☐ a perdu	□ 2	☐ proton	☐ a perdu	□ 2	☐ proton
	□ 3	☐ électron		□ 3	☐ électron

- 1. Quelle particule a été transférée au cours de la réaction ?
- 2. A-t-elle été transférée du cuivre vers le zinc ? Ou du zinc vers le cuivre ?
- 3. Donner les définitions d'une espèce oxydante et d'une espèce réductrice¹

 $^{^{1}}$ Cu $^{2+}$ (aq) est un oxydant ; Zn (s) est un réducteur

- 4. En prenant pour modèle les écritures proposées en bas de page², écrire les demi-équations concernant l'élément cuivre et l'élément zinc.
- 5. La réaction est une réaction d'oxydoréduction, proposer une définition de ce type de réaction.

Peut-on transformer des atomes de cuivre en ions cuivre (II), Cu²⁺?

A - Le système chimique à étudier

Un système chimique est constitué de tournure de cuivre, Cu(s) plongeant dans une solution de nitrate d'argent : $(Ag^+(aq) + NO_3^-(aq))$. Cette solution est incolore

B - Quelle évolution peut-on prévoir pour ce système ?

On suppose que la transformation est modélisable par une réaction d'oxydoréduction.

Indiquer quelles sont à l'état final : La couleur de la solution ? Les entités présentes ?

C - Analyse de l'état final

Proposer un test de caractérisation d'ions en solution qui permettra de confirmer ces prévisions.

D - Modélisation de la transformation

- 1. Identifier les réactifs et les produits.
- 2. Ecrire l'équation de la réaction chimique³

E - D'un point de vue microscopique ...

1. Choisir les bonnes réponses.

L'ion argent (I), Ag+			L'atome de cuivre, Cu		
☐ a gagné	□ 1	☐ neutron	☐ a gagné	□ 1	neutron
☐ a perdu	□ 2	☐ proton	a perdu	□ 2	☐ proton
	□ 3	☐ électron		□ 3	☐ électron

- 2. Quel est l'oxydant ? Quel est le réducteur ?
- 3. En prenant pour modèle les écritures proposées précédemment, indiquer les demi-équations de réaction.

En conclusion ...

- 1. Que se passe-t-il pour l'élément cuivre dans les deux cas ?
- 2. Le passage réciproque de l'oxydant au réducteur est-il possible ?

² Utiliser une écriture du type : Oxydant + n e- = Réducteur ou du type : Réducteur = Oxydant + n e-

³ Les ions nitrate NO_3^- sont des ions spectateurs.