Force des acides

Réaction entre un acide faible et l'eau

Un acide faible selon Brönsted réagit avec l'eau selon la réaction d'équation :

$$AH(aq) + H_2O(\ell) \rightleftharpoons A^-(aq) + H_3O^+(aq)$$

La constante d'équilibre de cette réaction est la constante d'acidité du couple acide-base AH / A-. Elle est reliée au pK_A par la relation :

$$pK_A = -log(K_A)$$

pKA d'un couple acide-base:

Le pK_A du couple acide-base AH / A- vérifie la relation : $pH = pK_A + log \frac{[A^-]_{eq}}{[AH]_{eq}}$

avec les concentrations à l'équilibre exprimées en mol . L^{-1} .

Lorsqu'on mélange un volume V_A d'acide de concentration C avec un volume V_B de sa base conjuguée à la même concentration, pour $C \le 1.10^{-1} mol \cdot L^{-1}$, on peut montrer que cette relation peut s'écrire

$$pH = pK_A + log\left(\frac{V_B}{V_A}\right)$$

Taux d'avancement final:

Le taux d'avancement final d'une réaction se calcule par la relation $\tau_f = \frac{x_f}{x_{max}}$, avec x_f l'avancement final et

 x_{max} l'avancement maximal.

Pour la réaction entre un acide et l'eau, on montre que le taux d'avancement final peut s'exprimer sous la forme : $\tau_f = \frac{10^{-pH}}{c}$ avec c la concentration de l'acide en $mol \cdot L^{-1}$.

Force des acides:

On classe les acides et les bases faibles en fonction de leur constante d'acidité ou de leur pK_A .

Plus la constante d'acidité K_A d'un couple acide-base AH / A- est grande, plus la force de l'acide AH est élevée.

Plus le pK_A d'un couple acide-base AH / A- est petit, plus la force de l'acide AH est élevée.

TRAVAIL À EFFECTUER

A. Détermination du pK_A de l'acide 1

Réaliser la solution 3, dans un bécher de 50 mL, en mélangeant un volume V_A = 15,0 mL de l'acide 1 avec un volume V_B = 12,0 mL de sa base conjuguée, notée base 1. L'acide 1 et la base 1 ont la même concentration en quantité de matière $C = 1,0.10^{-2} mol \cdot L^{-1}$ Réaliser de même la solution 4.

1. Mesurer le *pH* de ces deux solutions et compléter le tableau qui suit.

Solution	1	2	3	4	5
Volume V_A (en mL)	25,0	20,0	15,0	10,0	5,0
Volume V_B (en mL)	5,0	10,0	12,0	20,0	25,0
рН	4,1	4,6			5,4

- 2. Dans le tableur-grapheur, entrer les valeurs de V_A , V_B et pH des différentes solutions.
- 3. Programmer le tableur-grapheur afin de calculer $log\left(\frac{V_B}{V_A}\right)$ pour chaque solution.
- 4. Tracer la courbe $pH = f\left(log\left(\frac{V_B}{V_A}\right)\right)$
- 5. En utilisant les documents à disposition, expliquer comment on peut déterminer pK_A à l'aide de cette courbe.
- 6. Déterminer le pK_{A_1} de l'acide 1.

B. Détermination du taux d'avancement final

On a mesuré le pH de l'acide 1 et de l'acide 2, de même concentration $C=1,0.10^{-2}mol \cdot L^{-1}$, en mettant 20 mL de chaque acide dans des béchers de 50 mL. Les résultats sont notés dans le tableau qui suit.

À l'aide des documents à disposition, déterminer le taux d'avancement final τ_f pour chaque acide. Noter les résultats dans le tableau qui suit.

	Acide 1	Acide 2	
рН	3,4	2,9	
$ au_{ m f}$			

C. Exploitation des résultats

- 1. Le pK_A de l'acide 2 vaut 3,75. Comparer avec le pK_A de l'acide 1 déterminé dans la partie 1. Conclure quant à la force relative des acides.
- 2. Comment évolue le taux d'avancement de la réaction d'un acide avec l'eau en fonction de la force de cet acide ?